Mating-type genes and the genetic structure of a world-wide collection of the tomato pathogen Cladosporium fulvum.

نویسندگان

  • Ioannis Stergiopoulos
  • Marizeth Groenewald
  • Martijn Staats
  • Pim Lindhout
  • Pedro W Crous
  • Pierre J G M De Wit
چکیده

Two mating-type genes, designated MAT1-1-1 and MAT1-2-1, were cloned and sequenced from the presumed asexual ascomycete Cladosporium fulvum (syn. Passalora fulva). The encoded products are highly homologous to mating-type proteins from members of the Mycosphaerellaceae, such as Mycosphaerella graminicola and Cercospora beticola. In addition, the two MAT idiomorphs of C. fulvum showed regions of homology and each contained one additional putative ORF without significant similarity to known sequences. The distribution of the two mating-type genes in a world-wide collection of 86 C. fulvum strains showed a departure from a 1:1 ratio (chi(2)=4.81, df=1). AFLP analysis revealed a high level of genotypic diversity, while strains of the fungus were identified with similar virulence spectra but distinct AFLP patterns and opposite mating-types. These features could suggest the occurrence of recombination in C. fulvum.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Secondary Metabolism and Biotrophic Lifestyle in the Tomato Pathogen Cladosporium fulvum

Cladosporium fulvum is a biotrophic fungal pathogen that causes leaf mould of tomato. Analysis of its genome suggested a high potential for production of secondary metabolites (SM), which might be harmful to plants and animals. Here, we have analysed in detail the predicted SM gene clusters of C. fulvum employing phylogenetic and comparative genomic approaches. Expression of the SM core genes w...

متن کامل

Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato.

Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a...

متن کامل

Novel Mutations Detected in Avirulence Genes Overcoming Tomato Cf Resistance Genes in Isolates of a Japanese Population of Cladosporium fulvum

Leaf mold of tomato is caused by the biotrophic fungus Cladosporium fulvum which complies with the gene-for-gene system. The disease was first reported in Japan in the 1920s and has since been frequently observed. Initially only race 0 isolates were reported, but since the consecutive introduction of resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 new races have evolved. Here we first determined the...

متن کامل

A second gene at the tomato Cf-4 locus confers resistance to cladosporium fulvum through recognition of a novel avirulence determinant

The tomato Cf-4 and Cf-9 genes confer resistance to the leaf mould pathogen Cladosporium fulvum and map at a complex locus on the short arm of chromosome 1. It was previously shown that the gene encoding Cf-4, which recognizes the Avr4 avirulence determinant, is one of five tandemly duplicated homologous genes (Hcr9-4s) at this locus. Cf-4 was identified by molecular analysis of rare Cf-4/Cf-9 ...

متن کامل

The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense.

Cladosporium fulvum (syn. Passalora fulva) is a biotrophic fungal pathogen that causes leaf mold of tomato (Solanum lycopersicum). During growth in the apoplast, the fungus establishes disease by secreting effector proteins, 10 of which have been characterized. We have previously shown that the Avr2 effector interacts with the apoplastic tomato Cys protease Rcr3, which is required for Cf-2-medi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Fungal genetics and biology : FG & B

دوره 44 5  شماره 

صفحات  -

تاریخ انتشار 2007